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! Larsen, R. J. and M. L. Marx. 2006. An introduction to mathematical statistics and its
 
applications, 4th edition. Prentice Hall, Upper Saddle River, NJ. 920 pp. 
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Understanding by Design Templates 

Understanding By Design Stage I — Desired Results Week 5 
LM Chapter 5 Estimation Read 5.1-5.4, 5.8, skip 5.5-5.7 

G Established Goals 
•	 Using the method of maximum likelihood, estimate parameters for pdfs from real data 
•	 Construct and properly interpret the meaning of margin of error and confidence 

limits 
•	 What are the properties of good estimators? 
•	 Distinguish between frequentist and Bayesian approaches to parameter estimation 
U Understand 
•	 That much of science is based on estimating the parameters for man’s models of 

nature 
•	 The meaning of confidence intervals and margin of errors, especially of polling data 
Q Essential Questions 
•	 What’s the distinction between a maximum likelihood estimate and a maximum 

likelihood estimator (L & M p 349)? 
•	 Why aren’t we all Bayesians? 
•	 How many random permutations are needed for a Monte Carlo simulation? 
K Students will know how to define (in words or equations) 
•	 anonymous function, confidence interval for a binomial parameter, confidence 

limits, consistency, estimator, finite correction factor, geometric mean, maximum-
likelihood estimate, maximum likelihood estimator, likelihood function, margin of 
error, MVUE, parameter, sample standard deviation and variance, statistic, 
sufficiency, unbiased 

S Students will be able to 
•	 Fit the binomial, gamma, geometric, lognormal, negative binomial, normal, Pearson, 

and Poisson distributions  to environmental data using the method of maximum 
likelihood 

•	 Estimate and interpret the margin of error in a poll 
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Understanding by Design Stage II — Assessment Evidence Week 5 (6/28-7/4 M) 
Chapter 5: 5.1-5.3, 5.9 

•	 Post in the discussion section by 7/6 W 10 PM W 
•	 Taleb in his book ‘The Black Swan’ coined the term ludic fallacy to describe the 

mistake of thinking that probability models based on the casino can model 
events like climate change, the stock market, real estate and other processes that 
can be affected strongly be extreme events. Do you agree? Read the synopsis of 
the ludic fallacy on Wikipedia. I’ll provide a pdf of the relevant chapter from the 
book. 

•	 HW 4 Problems due Wednesday 7/6/11 W 10 PM 
•	 Basic problems (4 problems 10 points) 

•	 Problem 5.2.24 Bird Song p 363 Don’t use method of moments. Fit with 
Matlab’s geofit as in example 5.2.1. Enter the data using 
X=[repmat(1,132,1); repmat(2,52,1); repmat(3,34,1); repmat(4,9,1); 
repmat(5,7,1); repmat(6,5,1); repmat(7,5,1); repmat(8,6,1)]; 

•	 Problem 5.3.2 (p 376) Methylmercury in females, use case study 5.3.1 as 
a model. You must assume σ=8. 

•	 Problem 5.38 (p. 377) Tuna salads 
•	 Poll problem. Find a poll dealing with the upcoming 2012 elections and 

find out how the poll reports the margin of error and whether the 
difference between candidates is regarded as significant or not. Use 
Gallagher’s pollsig.m to assess the difference in proportions of the polls. 

•	 Advanced problems (2.5 points each) 
•	 Problem 5.26 Use Example 5.2.2 as a model (1 would be a good 

preliminary estimate for theta) 
•	 Case Study 5.81. Update the posterior probability distribution 

incorporating the new information that there were 9 hurricanes that 
struck the mainland US from 2001 to 2004. Does this updated 
information appreciably change predictions about hurricane landfalls? 
http://www.nhc.noaa.gov/pastdec.shtml 

•	 Master problems (1 only, 5 points) Case Study 5.2.2 analyzes 69 years of 
hurricane data and fits the data to the gamma distribution. Assume that the 
gamma distribution is an adequate fit to these data. Calculate the expected 
rainfall for the storm of the century resulting from hurricanes that have moved 
inland. 

http://www.nhc.noaa.gov/pastdec.shtml
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Introduction 

Chapter 5 is tough sledding. The chapter introduces a few simple concepts like the confidence 
limit and margin of error. But, the chapter starts off early and fast by wading into some of the 
most conceptually difficult areas of statistics such as deriving estimates for parameters using the 
method of moments and maximum likelihood and characterizing the quality of these estimates. 
We’ll skip the methods of moments in this course, in order to focus on maximum likelihood 
estimates. Matlab will help in that it has functions which will solve readily for the MLE 
estimators. At worst, you’ll have to write your own one-line anonymous function to find the 
MLE for a function. Larsen & Marx’s chapter finishes with a brief and difficult section on 
Bayesian analysis. We’ll just skim this section, noting that Bayesian inference has emerged as 
the state-of-the-art method for performing statistical analysis and mathematical modeling in 
many areas of the environmental and health sciences. 

We’ll use Matlab’s statistics 
toolbox’s maximum likelihood 
estimator programs to fit real-life 
data to probability models. For 
example, Case Study 5.2.2 fits the 2­
parameter gamma distribution to 
hurricane rainfall data using the 
method of moments. We’ll use a the 
built-in function gammafit to fit the 
two-parameter gamma distribution to 
rainfall from 36 hurricanes over 69 
years, as shown in Figure 1.  In 
modeling extreme events, it is vitally 

statistic. If θ is the parameter being approximated, its estimator is called , and the resulting 
number is called an estimate. Most of our common statistics (mean, standard deviation) are 
maximum likelihood estimators. 

Definition 5.2.1 Let k , k , ..., k  be a random sample of size n from the discrete pdf p (k; θ)1 2 n X 

where θ is an unknown parameter. The likelihood function, L(θ), is the product of the pdf 
evaluated at the n k ’s. That is i

important to be able to model and predict the probability of extreme events in the right tail of the 
distribution. The gamma distribution is one of the more useful distributions for modeling 
processes with distributions that are positively skewed. 

Some definitions 

Any function of a random sample whose objective is to approximate a parameter is called a 

Figure 1. Modeled on Figure 5.2.2 from Larsen & Marx 
(2006) p 361. 
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If y , y , ..., y  is a random sample of size n from a continuous pdf, fy(y;θ), where θ is an1 2 n

unknown parameter, the likelihood function is written 

Definition 5.2.2 Let  and 

corresponding to random samples k , k , ..., k  and y , y , ..., y , drawn from the discrete pdf 1 2 n 1 2 n

p (k; θ) and continuous pdf f (y; θ), respectively, where θ is an unknown parameter. In each X Y 

case let θ  be a value of the parameter such that L(θ ) � L(θ) for all possible values of θ. Then θe e e 

is called a maximum likelihood estimate for θ.
 

Definition 5.3.1 The margin of error associated with an estimate 
 , where k is the number of 

successes in n independent trials, is 100d%, where 

Definition 5.4.1 Suppose that Y , Y , ..., Y  is a random sample from the continuous pdf f (y; θ),1 2 n Y 

where θ is an unknown parameter. An estimator (=h(Y , Y , ..., Y )) is said to be unbiased (for1 2 n 

θ) if E( ) = θ for all θ. (The same concept and terminology apply if the data consist of a random 
sample X , X , ..., X  drawn from a discrete pdf p (k; θ).1 2 n X

By definition, the geometric mean of a set of n numbers is the nth root of their product. P. 385 
Note that operationally, the geometric mean is the back-transformed arithmetic mean of log 
transformed random variables. 
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Maximum likelihood estimation 

Examples & Case Studies 

Example 5.1.1 

Three coin tosses produce the result HHT. What is 
the maximum likelihood estimator for the p, the 
probability of tossing a head? The probability that 
X  is H is p, the probability that X  is H is also p1 2

and the probability that X  is T is (1-p). If X , X , 3 1 2 

and X3 are independent events, then the probability 
2of X , X , X  is f=p  (1-p). What is the value of p1 2 3

that maximizes that probability? As shown in 
Figure 2, it is the maximum of the likelihood 
function f, or the point at which the 1st derivative of 
f is 0: solve(diff(p.^2*(1-p))), or 2/3.  Matlab’s binofit, as implemented in Gallagher’s 
LMex050101_4th.m will solve not only for the maximum likelihood estimate for p but will 
calculate the 95% confidence intervals for that estimate: 

X=[1 1 0]; N=length(X);[Phat,PCI] = binofit(sum(X),N,0.05); 

The maximum likelihood estimate  is b with a very broad 95% confidence interval from 0.094 
to 0.992. Confidence intervals for binomial proportions are introduced on Larsen & Marx page 
369, Theorem 5.3.1. 

Example 5.2.1 

This is an interesting example for me. The first time I worked with it, I thought I’d found an 
error in the Matlab maximum likelihood fitting function for the geometric distribution. I happily 
emailed the head of Matlab’s statistical toolbox crew with my analysis. He reported back that 
there were two different ways of defining the geometric distribution. Larsen & Marx use one and 
the Mathworks uses the other, but the Larsen and Marx version can be quickly solved with the 
Matlab maximum likelihood estimator function. 

The problem states that there were four independent observations representing the geometric 
k-1 probability model p (k)=(1-p) p, k = 1, 2, 3, ... Find the maximum likelihood estimate for p.X

Recall that the geometric distribution was introduced in section 4.4. Larsen & Marx define X as 
the trial on which the first success occurs if at each trial, the probability of success is p. The 
Mathworks follow a second widely used definition of the geometric distribution as the number 
of failures before the first success occurs with their geometric distribution defined as 

kpX Matlab(k)=(1-p) p, k = 1, 2, 3, ...
Matlab’s geometric distribution functions can be called to solve Larsen & Marx’s problems with 

M  is the random variable used in the Matlab functions.  For the conversion that X =X-1, where XM

Figure 2. Probability of observing HHT for 
different values of p. 

http:binofit(sum(X),N,0.05
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example, in L & M the four independent observations of the trial at which the first success 
occurred could be represented by the vector X=[3 2 1 3]. To use Matlab’s maximum likelihood 
estimation routine, just call maximum likelihood estimate function, mle: 
[Phat,PCI] =mle(X-1,'distribution','geometric') 

This will produce the maximum likelihood estimate of 4/9 with the 95% confidence intervals of 
0.120 and 0.769. In my m.file LMex050201_4th.m, I follow the book’s approach of 
differentiating the likelihood function. Follow it if you wish. 

Example 5.2.2 

This is an interesting example, because it shows how Matlab’s mle function can be used to solve 
for a non-standard pdf. In this case, a continuous model was specified: 

To solve this non-standard pdf, we’ll write an anonymous function in Matlab. As covered in 
Handout 3, Matlab has script programs and named function m.files. In most of the optimization 
routines that are fitting parameters to data or solving equations, there is a function to be 
minimized, or solved, or maximized. Oftentimes, these are named. But, occasionally you’ll only 
need a function once so why bother cluttering up your hard drive with another file. That’s were 
anonymous files are useful. The above function can be programmed in Matlab in one line and 
named fyytheta. The entire program that enters the data for this problem and finds the maximum 
likelihood estimate for theta takes only 4 lines. 
X=[9.2 5.6 18.4 12.1 10.7]; % The data 
fyytheta=@(y,theta)(1./theta.^2.*y.*exp(-y./theta)); % The anonymous function 
theta=10; % This is an initial guess 
[theta, thetaCI]= mle(X,'pdf',fyytheta,'start',theta,'lowerbound',0) % The mle estimation 

These four statements find the maximum likelihood estimate for θ, 5.6 and the 95% CI for this 
estimate: 2.13 and 9.07. 

What does it mean for 5.6 to be  maximum likelihood estimate for the parameter θ? For each 
value of theta, the function fyytheta generates a probability density function. From this pdf, the 
probability of each datum can be calculated, and if we assume that the data are random 
variables, the probability of the event that gave rise to the sample is the likelihood. The 
likelihood is the product of these probabilities. The pdf for the maximum likelihood estimate of 

mailto:fyytheta=@(y,theta)(1./theta.^2.*y.*exp(-y./theta));
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=5.6 is shown in Figure 3 
with the 5 data. The 
likelihood is the product of 
these five probabilities, 
which is 1.84 x 10-7 . 

But what would the pdf look 
like for a different θ, say 
11.2? Shown in Figure 4 is 
the pdf for θ=11.2 with the 5 Figure 3. The pdf for the model with θ=5.6. Also shown are the 
observations. With this , theprobabilities for the five observations with likelihood 1.84 x 10 -7 . 

-8 likelihood is  2.66 x 10 ,
which is only 14% of the 
maximum likelihood. 

Similarly, we can plot the pdf 
if θ were 2.8 as shown in 
Figure 5 with likelihood of 

-9 8.54 x 10 , only 4.6% of the
maximum likelihood with 
θ=5.6. So, since there is no 
estimate of θ that will Figure 4. The pdf for the model with θ=11.2. Also shown are the 
produce a likelihood larger probabilities for the five observations with likelihood 2.66 x 10 -8 . 
than = 5.6, 5.6 is the 
maximum likelihood estimate. As noted in the book, it is a single number so it is an estimate, 
not an estimator. An 
estimator describes a random 
variable with a mean, 
variance, and pdf. 

Figure 5. The pdf for the model with θ=2.8. Also shown are the 
probabilities for the five observations with likelihood 8.54 x 10 -9 . 
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What would happen to our 
maximum likelihood 
estimate, based on 5 
independent observations,  if 
we added an additional 
independent observation, say 
30. It would change the 
maximum likelihood 
estimate from 5.6 to 7.2 as 
shown in Figure 6. The Figure 6. The pdf for the model with θ=7.2, the maximum 

-9 
likelihood estimate if an additional observation of 30 is added to likelihood is now 1.23 x 10 , but


this likelihood can not be the original 5 observations, shown above. The likelihood is 1.23 x
 
compared to the likelihoods 10-9 . 

based on only 5 samples.
 
This likelihood must be compared with likelihoods based on the same 6 observations.
 

Figure 7 shows the pdf and
 
likelihood if we’d used the
 
previous maximum
 
likelihood estimate,  
 =5.6. 
The likelihood is 8.29 x 10 -10 , 
only 67% of the likelihood 
with = 7.2. With that extra 
observation of 30, no other 
estimate of theta produces a 
likelihood as low or lower Figure 7. The pdf for the model with θ=5.6, which is no longer the 

-9 than 1.23 x 10 , so 7.2 is the maximum likelihood estimate if an additional datum of 30 is 
maximum likelihood included. Also shown are the probabilities for the five observations 

-10 estimate. with likelihood 8.29 x 10 . 

Case Study 5.2.1 

A major poll was conducted at the University of South Florida with the results shown in Table 1 
below. 

Table 1. Results of a poll at the University of 
West Florida documenting the number of major 
changes. The final column is the result of fitting 
the Poisson model to these data. 

It is pretty easy to fit the Poisson distribution to observations, but the Mathworks have made the 
task even easier by providing a maximum likelihood estimation function for the Poisson 
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distribution. These data were fit to the Poisson distribution using Matlab’s Poisson maximum 
likelihood estimator function. The only non-obvious part to the fitting is that the data have to be 
expanded as if the poll results for each student were being entered: 
X=[zeros(237,1);ones(90,1);2*ones(22,1);3*ones(7,1)]; 
[LAMBDAHAT, LAMBDACI] = poissfit(X) 

This function produced =0.4354 

with 95% confidence limits of 
0.3669 and 0.5309. The fit of the 
data to the Poisson distribution 
shown in Figure 8 appears excellent. 
Using methods from Chapter 10, we 
will quantitatively analyze the fit, 
but a so-called chi-by-eye test 
indicates no problems with the use 
of the Poisson model to fit these 
data. 

Case Study 5.2.2 

Between 1900 and 1969, 36 hurricanes moved as far inland as the Appalachians. Listed in Table 
2 are the maximum 24-h precipitation events in inches for these 36 storms. 

Figure 8. A grouped bar chart shows the observed number 
of major switches and those expected under the Poisson 
distribution with  = 0.4354. 

Table 2. Maximum 24-h rainfall (inches) while 36 hurricanes were over the mountains. 

RAIN=[31 2.82 3.98 4.02 9.5 4.5 11.4 10.71 6.31 4.95 5.64 5.51 13.4 9.72  6.47 10.16 4.21 
11.6 4.75 6.85 6.25 3.42 11.8 0.8 3.69 3.1 22.22 7.43 5.0 4.58 4.46 8 3.73 3.5 6.2 0.67]; 

Figure 9 shows these 36 rainfall 
events with a superimposed fit to the 
gamma distribution. I used Matlab’s 
gamfit to fit the two parameters of 
the gamma distribution.  The 
Mathworks has a slightly different 
form of the gamma distribution, but 
Matlab’s gamma b parameter is 
simply the inverse of Larsen & 
Marx’s λ 

The gamma distribution, introduced 
in section 4.6, was used to fit the 
data using Matlab’s gamfit 
maximum likelihood estimation routine. 

Figure 9. Maximum 24-h rainfall (inches) for 36 
hurricanes from 1900 to 1969. Superimposed is the gamma 
distribution fit. 
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The gamma distribution, introduced in Larsen & Marx section 4.6 Theorem 4.6.1, has two 
parameters, lambda and r. 

Theorem 4.6.1 Suppose that Poisson events are occurring at the constant rate of λ per unit time. 
Let the random variable Y denote the waiting time for the rth event. Then Y has pdf f (y) where Y

The gamma distribution, indicated by Γ, is defined so that x! = Γ (x+1), so Theorem 4.6.1 can be 
rewritten as: 

Matlab’s gamma pdf function is described in two related parameters, a and b. Here is the 
equation from Mathworks’ gampdf documentation: 

It is obvious that Matlab’s a is Larsen & Marx’s r and Matlab’s b is the inverse of Larsen & 
Marx’s λ. 

Gamfit produces a MLE estimate of r of 2.187 with 95% CI: [1.421 3.367]. Larsen & Marx 
introduce the concept of a confidence limit later in Chapter 5 but don’t provide the MLE 
estimator for the confidence limit for the Poisson distribution.  Larsen & Marx (2006) use the 
methods of moments to find r =1.60, which is barely within the 95% CI identified by Matlab’s. 
Matlab’s b parameter is Larsen & Marx's 1/lambda. Matlab’s MLE estimate of λ is 0.300 with 
95% CI: [0.185 0.487]. Larsen & Marx find lambda=0.22, which is  within Matlab’s 95% CI. 

The application of the gamma 
distribution has very little to do with 
the description of the gamma 
distribution in Theorem 4.6.1. But, 
the gamma distribution has some 
nice features in that it is a two-
parameter distribution in which 
produces a pdf with only positive 
values with positive skew. This often 
can be a concise description of 
processes like rainfall events. Using 
the parameters from the 36 actual 
rainfall events, I generated random 
hurricane rainfall patterns with 
gamrand  as shown in Figure 10. If 

Figure 10. A random set of 36 rainfall events generated 
with the estimated gamma distribution parameters fit to the 
data in Table 2 and Figure 9. Superimposed is the gamma 
distribution. 

http:lambda=0.22


 

EEOS 601 
Prob. & Applied Statistics 
Week 5, P. 14 of 56 

one were insurance claims adjuster, it might be informative to run a century or so of storms to 
predict the storm of the century. 

It is mildly disturbing that the Larsen 
& Marx estimates for the parameters 
found by the method of moments 
(r=1.6) and =0.22 differ from 
Matlab’s maximum likelihood 
estimates of r=2.187 and lambda = 
0.3. I calculated and plotted the two 
likelihood functions in Figure 11. The 

Figure 11. Larsen & Marx’s fit (blue) and Matlab’s MLE likelihood for the Matlab parameters 
fit (red dashed line) are superimposed. Matlab’s MLE has a is 3.5 x 10-45, which is larger than the 
larger likelihood. Larsen & Marx likelihood fit by the
 

method of moments 1.4 x 10 -45 . So, it is clear that Matlab’s solution is preferred.
 

Example 5.3.1 

This example introduces the 
confidence limits for the normal 
distribution. If one collects a random 
sample from a distribution with 
mean µ and calculates the mean and 
a confidence interval for the mean, 
this confidence interval for µ will 
contain the unknown µ 95% of the 
time; 5% of the time, it will not 
contain µ. The probability that a 
single confidence interval contains µ 
is either 100% or 0%; µ is either 

Figure 12. The 95% confidence region for the standard inside or outside the CI.  Figure 12 
normal curve. Note the lower and upper cutoffs of -1.96 shows the 95% confidence interval 
and 1.96.for the standard normal distribution. 
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Figures 13 and 14, based on Figure 5.3.2 in the text shows the result of 100 random samples of 
size 4 drawn from a normal population with µ=10 and σ = 0.8. For each one of these 100 random 
samples, a 95% confidence interval was created. By definition, in the long run 95% of these 
intervals should contain µ = 10. In the first figure, only 3 of 100 intervals did not contain µ=10, 
but in the second figure 5 of 100 did not contain µ=10. 

Case Study 5.3.1 

Larsen & Marx (p. 367-368) provide data on the maximum head breadths (mm) of 84 Etruscan 
males. Does the 95% CI for these skulls include the modern mean for Italian men, which is 
132.4 with σ = 6? 

This is mainly a computational 
exercise. We’ll cover the appropriate 
1-sample and 2-sample tests for this 
problem in Chapter 9. For now, we’ll 
just calculate the 95% CI with a few 
Matlab statements, with the key 
assumption that the standard 
deviation is known and is 6. After Figure 13. As described in the text, 100 confidence 
we have a few more statistical tools intervals are shown for samples of size 4 drawn from 
available, we’ll be able to use the normal distribution with µ=10 and σ=0.8. While in the long 
sample standard deviation run 5% of the confidence intervals wouldn’t include µ, in 
(s=5.9705) and a Student’s t these 100 trials, only 3 confidence intervals (marked in red 
multiplier to calculate a more and with means connected by a line) did not include µ = 
appropriate 95% confidence interval. 10. 

DATA=[141 148 132 138 154 142 
150

 146 155 158 150 140 147 148
 144 150 149 145 149 158 143
 141 144 144 126 140 144 142
 141 140 145 135 147 146 141
 136 140 146 142 137 148 154
 137 139 143 140 131 143 141 Figure 14. As described in the text, 100 confidence 
149 148 135 148 152 143 144 intervals are shown for samples of size 4 drawn from 
141 143 147 146 150 132 142 normal distribution with µ=10 and σ=0.8. While in the long 
142 143 153 149 146 149 138 run 5% of the confidence intervals wouldn’t include µ, in
142 149 142 137 134 144 146 these 100 trials, only 3 confidence intervals (marked in red 
147 140 142 140 137 152 145]; and with means connected by a line) did not include µ = 

DATA=DATA(:); % convert to a 10. 
single column vector 
meanD=mean(DATA);sigma=6 
CI=[meanD-norminv(0.975)*sigma/sqrt(length(DATA)) ...
    meanD+norminv(0.975)*sigma/sqrt(length(DATA))]; 
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fprintf('The mean is %4.1f with CI: [%4.1f %4.1f]\n',meanD,CI) 

Figure 15 shows the distribution of 
these skull lengths, with a 
superimposed normal distribution 
(with σ=6). The formula for the 95% 
CI if σ is known is: 

The program above produces the 
pithy result that:  The mean is 143.8 
with CI: [142.5 145.1]. This result 
could also have been obtained using 
Matlab’s normfit.m Since this confidence interval does not contain 132.4, one has strong 
evidence that the Etruscan males had head widths distinctly different from modern Italian males. 

Confidence Interval for a binomial parameter p, Case Study 5.3.2 

Theorem 5.3.1 defines the 95% confidence interval for a binomial parameter p. This is an 
important and useful formula, so I’ll report it here: 

Theorem 5.3.1 Let k be the number of successes in n independent trials, where n is large and p 
= P (success) is unknown. An approximate 100(1-α)% confidence interval for p is the set of 
numbers 

Figure 15. A histogram of 84 Etruscan maximum head 
breadths. I also plotted the normal pdf using the observed 
mean = 143.8 with σ = 6. I also plotted the maximum head 
breadth of modern Italian males (132.4).  

I programmed this equation as LMTheorem050301_4th.m. By entering k, n and alpha, this 
Matlab function produces the confidence limits and observed p. 

Case Study 5.3.1 applies this formula. A poll found that 713 of 517 respondents believed in the 
idea of intelligent life on other worlds. The observed proportion was 47. 0 (± 2.5) % (± half 95% 
CI). As we will see shortly, the margin of error for the poll is 2.5%. 
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Example 5.3.2 

This example uses the median test to assess whether a random number generator is generating 
random numbers. In this example, Matlab’s random number generator was used to generate 
1000 samples of size 60 drawn from the exponential pdf: 
n=60,trials=1000;Y=exprnd(1,n,trials); 
A little calculus shows that the median of the exponential distribution with mean =1 is log(2). I 
calculated the proportion of samples of 60 with medians less than log(2). Under the null 
hypothesis that the numbers are random, the expected value is 0.5.  You can run as many 
simulations as you want. In one simulation with 10,000 trials, 5.1% of the 95% confidence 
intervals did not include 0.5. 

Example 5.3.3: Margin of Error 

71% of 1,002 adults interviewed after Hurricane Charlie in August 2004 thought President Bush 
was doing a good job. What would the margin of error be associated with that poll? The two-line 
program finds the margin of error to be 3.1% 
n=1002;ME=norminv(0.975)/(2*sqrt(n))*100; 
fprintf('The margin of error is %3.1f%%\n',ME) 

Example 5.4.1: Precision of an estimator 

This simple example compares the 
precision of estimators of the 
binomial proportion with 10 coin 
tosses vs. 100 coin tosses. With 6 
heads in 10 coin tosses, the 
probability that the true p is within 
10% of the estimated value of 0.6 is 
0.66647 from the binomial pdf. With 
100 coin tosses, one can estimate the 
probability that the true p is within 
10% using either the exact binomial 
distribution (p=0.968) or from the 
large-sample normal approximation 
to the binomial (p=0.959). Figure 16, 
replicating Figure 5.4.1 in the text 
shows these two areas. 

Example 5.8.2 Bayesian analysis of a binomial parameter 

This example uses the beta distribution as the prior and posterior distribution in a Bayesian 
analysis. Given prior information about the sale of videos, Larsen & Marx model the prior using 
the beta distribution. The store operator guessed that between 3% and 4% (mean or median 0.35) 
of his customers would be interested in buying his video and no more than 7%. A beta 

Figure 16. A histogram of 84 Estruscan maximum head 
breadths. I also plotted the normal pdf using the observed 
mean = 143.8 with σ = 6. I also plotted the maximum head 
breadth of modern Italian males (132.4).  
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distribution with parameters 4 and 102 produces a reasonable prior. In the text, Larsen & Marx 
(2006) provide a formula on how to update this prior distribution in light of new information. I 
applied this information after speculating that the a survey of customers might find that 4 out of 
100 wanted to buy the video. What would the posterior distribution look like in light of the new 
data which indicates that far more than 3% are interested in buying the video. Figure 17 shows 
the prior and posterior distributions for this problem. 

Obviously, the addition of the new data indicating 4 of 100 customers wanted to buy the video 
produces a much more precise 
estimate of the probability 
distribution for theta. The ability to 
update prior expectations in light of 
new information is one of the 
reasons that Hilborn & Mangel 
(1997) argued that ecologists should 
all become Bayesians. Bayesian 
inference was the best available way 
to update knowledge with new facts. 
On the flip side, ecologists would 
have to become more familiar with 
probability modeling in order to 
apply Bayesian methods. Most 
ecologists jump straight into 
hypothesis testing with t tests without stopping to ponder the underlying probability models that 
underlie statistical inference. Another argument against Bayesian methods is that it assumes that 
the world is parametric, that there are underlying parametric models that govern the behavior of 
real-life events. Bayesian analysis forces us to explicitly invoke these probabilistic models in 
order to generate the answers to our statistical questions. 

Case Study 5.8.1: Bayesian analysis of Poisson parameter 

In this case study, 150 years of 
hurricane landfall data were 
provided. Based on the first 50 years 
a Bayesian prior pdf using the 
gamma distribution was conducted. 
As shown in Figure 18, this Bayesian 
prior was updated with the next 100 
years of hurricane information to 
produce the posterior pdf for 
hurricane landfall data. 

Figure 17. Prior (dashed) and posterior pdf’s for theta 
given that a survey of users indicated that 4 of 100 wanted 
to buy the video.   

Figure 18. Prior (dashed) and posterior pdf’s for theta, the 
number of hurricanes reaching landfall. The prior was 
based on the first 50 years of data and the posterior 
includes the subsequent 100 years of data.   
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Figure 19. Degrees of Freedom discussed by Legendre & Legendre’s (1998) Numerical 
Ecology. 

On confidence limits & Neyman-Pearson theory 

Larsen & Marx (2006) appears to be written firmly in the theory of hypothesis testing 
advocated by Jerzy Neyman & Egon Pearson. Neyman & Pearson, along with Fisher, were 
among the founders of the frequentist school of statistics. In this approach to statistical testing, 
an alpha level was established in advance of performing the statistical test, usually α=0.05. This 
is the probability of Type I error (Type I and Type II errors were Neyman-Pearson innovations), 
the probability of rejecting a true null hypothesis by chance. The critical value of the test statistic 
was identified before performing the test. After analyzing the data, the test statistic was 
compared to the critical value. If the test statistic, say Student’s t, exceeded the critical value 
based on α and the degrees of freedom, then the test was judged as providing significant 
evidence that the null hypothesis was false. The results would be reported as, “We rejected the 
null hypothesis that µ1 = µ2 at α =0.05 level”, or more briefly, “the test was significant at α = 
0.05 {or whatever the chosen α was}.” If the test statistic was less than the critical value, then 
the test was judged as providing insignificant evidence that the null hypothesis was false. The 
results would be reported as, “I failed rejected the null hypothesis that µ1 = µ2”, or more briefly, 
‘the test was insignificant at α = 0.05.” This approach to hypothesis testing made a great deal of 
sense when it was difficult to calculate the p value. A test could be performed and compared to 
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tabulated values of the critical values of test statistics at say the α=0.1, 0.05, and 0.001 levels of 
significance. Now, however, most reputable journals insist that the actual p values for the test be 
included. Matlab, for example, will calculate the p values for all of the major test statistics. 
Moreover, Matlab can perform the exact probability analysis for many of the major statistical 
tests and can perform randomization tests to produce p values to most desired levels of accuracy. 

Ronald Fisher never accepted the Neyman-Pearson approach to hypothesis testing with critical 
values, insisting that the p values should be reported. He rejected the rather automatic decision 
rules of accept/don’t accept, and significant/not significant. Indeed, Mayo’s (1996) synthesis of 
frequentist hypothesis testing points out that Egon Pearson was less than enthused about the 
black-white, significant-nonsignificant dichotomy that the Neyman-Pearson approach entailed. 
Mayo argues forcefully that Neyman & Pearson’s most influential contribution to scientific 
advance was not the significant/non significant dichotomy based on critical values but the 
introduction of confidence intervals. Confidence intervals, especially the 95% confidence 
interval allow an investigator to report the effect size and an estimate of the uncertainty on the 
effect size. It allows a ready assessment of not only whether the null hypothesis is false but also 
the relative likelihood of alternate hypotheses. In modern statistics, one of the chief allures of 
Bayesian inference is that it allows and assessment of the probability of a hypothesis before and 
after data are collected and analyzed. 

Confidence limits usually have the 
following form: Effect size ± a 
multiplier based on the normal, t or 
F distributions * Standard Error. 
Surprisingly, there is a great deal of 
confusion among practicing 
scientists about the difference 
between the standard deviation and 
the standard error. Part of that 
confusion is that there are many 
standard errors, the most common 
being ‘the standard error of the 
mean,’ which is the conventional 
{standard deviation of the 
sample}/.n. As Larsen & Marx 
(2001, Section 4.3, pp. 263-283) 
discuss and demonstrate with 
Example 4.3.2, the underlying 
population distribution may take a 
variety of forms — including 
uniform, Poisson, binomial, and 
geometric —  but as sample size 
increases, test statistics such as the 
sample mean and the difference in means between samples will tend towards the normal 
distribution. Ramsey & Schafer (2002) present a nice graphic (shown at right) showing this 

Figure 20. Demonstration of the effect of the central limit 
theorem on the distribution of differences in means from 
Ramsey & Schafer’s Statistical Sleuth 
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effect for a 2-sample t test for the difference in means between a pair of populations with 
positive skew. The underlying distributions are non-normal, but the difference in means has a 
distribution that is more nearly normal. The standard deviation of the difference in means is also 
called the ‘standard error’ of the difference in means. It can be calculated from the standard 
deviations of the individual samples as shown in @. Since the standard deviations are estimated 
from the samples, the appropriate multiplier for the 95% confidence interval around the 
observed difference in means would be the Student’s t statistic with d.f. equal to n+m - 2, where 
n and m are the sample sizes of the two samples and 2 df are lost since the mean and standard 
deviation is being estimated from the data. 

The variance of the test statistic, such as the difference in means shown in Figure 20 will 
decrease, proportionate to .n. So, when reporting a test statistic, such as the observed difference 
in means, the appropriate measure of precision is either the standard error or the 95% confidence 
interval. In scientific meetings, it is not unusual to see the estimates of precision, or error, 
represented as ± 1 standard error. Indeed, that is how the MA Dept of Education reports the 
variability on MCAS scores. However, this is not sufficient to judge the precision of the 
estimate. If the variance is known from theory, one can immediately recognize that the standard 
error must be multiplied by the z statistic associated with the 97.5th percentile of the standard 
normal distribution, or 1.96, to obtain 95% confidence intervals [Matlab’s norminv(0.975)]. 
However, what if the standard error is plotted, and the presenter does not present the sample 
size? I’ve often seen error bars on plots based on means with just 3 replicates. The appropriate 
multiplier is then not 1.96, but t0.975, 2 df or 4.3!  That could make a huge difference for a member 
of the audience assessing whether the results presented in a graph are different from what could 
be expected by chance alone. The following figure shows the effect of sample size, d.f., on 
Student’s t statistic 

An investigator showing error bars for means based 
on 2 replicates, with no indication that n=2, may be 
trying to deceive his audience, since those error 
bars would have to use a Student’s t statistic of 12.7 
to convert to 95% confidence intervals. 

Figure 21. Effects of d.f. on the magnitude 
of Student’s t statistic used to construct 95% 
confidence intervals. The Matlab program to 
calculate this (without labels), using tinv is: 
df=1:12;alpha=.05;p=1-alpha/2;fyt = 
tinv(p,df);bar(df,fyt);grid 
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Interpreting confidence intervals 

Ramsey & Schafer (2002) provide a superb graphic, Figure 22 below, showing how to interpret 
the error bars, presented as 95% confidence intervals in presentations. 

Figure 22. A rough guide to interpreting 
overlap in 95% confidence intervals, using 
the guidance that a p-value less than 0.05 is 
regarded as moderate to strong evidence of a 
difference. Note especially in Case 2 that 
the confidence limits can overlap and still 
produce a difference in sample statistics 
with p values less than 0.05. This 
interpretation of ‘error bars’ is not possible 
with standard errors if the sample sizes are 
not provided (and even with sample sizes 
provided, one would have to have a good 
memory of Student’s t statistics for n<6-10.) 
[This is display 5.19 in the 2nd edition of 
Sleuth] 
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Confidence intervals, Standard Errors and significant figures for reporting 
results 

Bevington & Robinson (1992) and Taylor (1997) are the two best 
‘how-to’ guides on how to propagate errors and report errors in 
publications. Of the two, I prefer the more rigorous Bevington & 
Robinson, especially because it stresses Monte Carlo simulation, 
but Taylor may have the best cover photo of any recent book in 
statistics (see Figure 23). Neither book is in accord with current 
editorial practice in ecological, psychological or medication 
journals, because these authors recommend reporting standard 
errors, rather than 95% confidence intervals, in reporting results. 

Both books argue that investigators should let the standard error 
(or confidence interval) dictate the level of precision reported for 
results. It is a sign of ignorance to report a result as 7.51478 ± 
0.5672. Note, that in reporting results that you should always note 
whether that estimate of error to the right of the ± is a standard 
deviation (a poor choice), a standard error (the most common in 
the physical sciences) or a half-95% confidence interval. This 
result could be reported as 7.5 ± 0.6. Bevington & Robinson argue that standard errors should be 
reported to 1 significant figure only, but I’ll argue shortly that there are reasons for reporting 2 
significant figures. As a follow-up recommendation, there are reasons for reporting 1 additional 
significant figure than can be justified by the data. 

One of the most persuasive arguments for retaining 1 more significant figure than warranted by 
the data is revealed by the answer to the following question, “What is the normal human body 
temperature?”  Of course, the answer is 98.6ºF, but that answer is wrong. John Alan Paulos, in 
his book, “A mathematician reads the newspaper” recounts the story of Wunderlich who carried 
out the most comprehensive survey of human temperatures. They are highly variable. I wish I 
could report his actual results, but I have been unable to find an appropriate citation, and Paulos 
doesn’t provide citations for his story. Paulos reports that the actual data were reported to just 
two significant figures, say 37ºC ± 0.8. To Wunderlich, there was no reason to add a 3rd 

significant figure to his data. However, when people converted his 37ºC to Fahrenheit, they 
produced the now highly precise 98.6º F. According to Paulos, a report that I haven’t been able 
to confirm, the best estimate of normal human temperature is 98.2º F. The conversion to 
Fahrenheit has given normal human temperature a diagnosis of a mild fever. Had Wunderlich 
presented that single extra, non-significant at α=0.05, digit, the conversion to Fahrenheit would 
have been more accurate. 

Figure 23. Taylor (1997) on 
error analysis. 
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Theorem 5.3.2 (p. 373) solves for ‘How Many Monte Carlo 
Simulations should you run?’ 

In running a Monte Carlo simulation, you face a choice about how many simulations to run.  In 
the past, I’d  used a general rule of thumb that the number of simulations should be about 10 
times the inverse of the significance level of the test. As we’ll see Manly (1991, p. 80-84) 
reviewed previous studies and presented a rough rule of thumb that the number of Monte Carlo 
simulations should be fifty times the inverse of the significance value (α) of 0.05 and five times 
the inverse of the significance value (α) of 0.001. Using Theorem 5.3.2 from Larsen & Marx 
(2006, p. 373), the number of simulations should be about four times the inverse of the 
significance value. 

Theorem 5.3.2 (Larsen & Marx, 2001, p. 331, 2006, p. 373) Let  be the 

estimator for the parameter p in a binomial distribution. In order for  to have at 

least a 100(1-α)% probability of being within a distance d of p, the sample size 
should be no smaller than 

where is the value for which P(Z � ) = α /2. 

This theorem can be applied to solving the problem of how many Monte Carlo simulations are 
required to achieve a given p value.  If you want to run a simulation that would distinguish 
between p=0.001 and p=0.002, you could set d to 0.001 in the equation and solve for n. I wrote a 
simple function m.file that solves this equation, called LMTheorem050302.m 
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function n=LMtheorem050302(alpha,d,p) 

% format n=LMtheorem050302(alpha,d,p) 

% How many samples required to achieve a 

% margin of error of d for a parameter 

% p in a binomial distribution 

% input alpha, e.g., alpha=0.05 for 

% Margin of error=1/2 95%CI 

% d margin of error 

% p optional, binomial proportion 

% if not provided, p=0.5 used 

% so that d is the maximum. 

% output n number of samples required 

Psn=(1-alpha/2); % Find the p value for the cumulative standard normal distribution 

% For alpha=0.05, find the z value at the 0.975 percentile of the cumulative 

% standard normal distribution, or 1.96 

if nargin<3 

p=0.5; 

n=((erfinv(2*Psn-1) .* sqrt(2)).^2)./(4*d.^2); 

else 

n=((erfinv(2*Psn-1) .* sqrt(2)).^2).*p.*(1-p)./d.^2; % see (5.3.4) 

end 

I wrote the m.file so that full vectors could be used for the d values. By using the following two 
lines, you can find the n for 50 values of d from 10-6 to 0.01 

d=logspace(-6,-1)';% Create 50 logarithmically spaced elements from 10^-6 to 10^-1 
n=LMtheorem050302(0.05,d); 

These are plotted using loglog(d,n). I’ve programmed this in NforMCtrials.m The result is 
shown in Figure 24. 

http:alpha=0.05
http:alpha=0.05
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Figure 24. Graphical display of Theorem 5.3.2 for α=0.05. The number of 
samples required is inversely proportional to the square root of d. 

Using this application of Theorem 5.3.2, if one wishes to run sufficient Monte Carlo simulations 
-2 to distinguish between 0.001 and 0.002 (d=0.001), then one should use n=0.96*0.001 , or

960,000 Monte Carlo trials.  But, this is far too conservative, because it is based on a worst-case 
variance when the binomial proportion is 0.5. 

If you look at the proof of Theorem 5.3.2, especially equation (5.3.4), you’ll see that the theorem 
provides a solution for equation 5.3.4 for p=0.5, the binomial proportion with the highest 
variance: 

(5.3.4)
 

In using Monte Carlo simulations, the appropriate p value is the desired alpha level, not p=0.05. 
In running a Monte Carlo simulation, I record how many random realizations of the underlying 
probability model produce a result that is equal to or more extreme than that observed.  It is a 
Bernoulli trial process, suitably modeled with the binomial probability distribution. For 
distinguishing between 0.001 and 0.002, the appropriate p value is 0.001, and more importantly, 
the variance is 0.001*0.999, 250 times smaller than 0.5*0.5. I wrote Theorem050302.m, so that 
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it would use equation 5.3.4, but it could also use a third input argument as the probability to 
insert in equation 5.3.4. To choose the appropriate n for Monte Carlo simulation to estimate p 
values for a null hypothesis, the call to LMTheorem050302 should be: 
> n=LMtheorem050302(0.05,p,p) 
where p is the desired significance value.  This makes a large difference in the number of Monte 
Carlo simulations required, as shown in Figure 25. 

Figure 25. Graphical display of Theorem 5.3.2 for α=0.05. 

Now, the number of Monte Carlo simulations is about 4*alpha -1.0 . For α=0.05 and d=0.001, 
instead of 960,000 Monte Carlo trials, this analysis indicates that only 3,838 Monte Carlo 
simulations are required. 

So, I conclude that the number of Monte Carlo simulations at about 4*1/(desired precision of the 
p value) 

What do other authors say? 

Bevington &  Robinson (1992, p. 92) note that the relative error in a result calculated by the 
Monte Carlo method is inversely proportional to the square root of the number of successful 
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events generated.  This conclusion matches the result shown in Figure 1, but it is overly 
conservative. If the goal is to attain a given precision, e.g., to be able to distinguish between 
0.002 and 0.003 with a fixed probability of Type I error, then the number of Monte Carlo trials 
increases as a linear function of 1/α, as shown in Figure 25, and not a quadratic function of 1/α 
as shown in Figure 24 and discussed by Bevington &  Robinson (1992, p. 92). The difference in 
expected sample sizes can be tremendous as the example discussed after Figure 26 indicates 
(3,838 vs. 960,000). 

Manly (1991, p. 80-84) summarizes a number of studies and offers this simple recommendation, 
“It seems therefore that 1000 randomizations is a reasonable minimum for a test at the 5% level 
of significance, while 5000 is a reasonable minimum for a test at the 1% level.”  His rule of 
thumb is 5 to 50 times the inverse of the desired alpha level, which is considerably more 
conservative than the approach above, based on Larsen & Marx’s (2006, p. 373) Theorem 5.3.2 

Can we test our estimate of the required N? 

Bevington & Robinson (1992) and Nahin (2000) show 
how Monte Carlo simulation can be used to estimate the 
value of pi.  Figure 26 diagrams how π can be 
determined by placing x and y coordinates from a 
uniform random number distribution and calculating 
π = 4*successes/Trials, where success is a point 1 unit or 
less from the origin. This Monte Carlo simulation can be 
regarded as a Bernoulli trial with p= π/4.  How many 
Monte Carlo trials would we have to run to get a 

-5 simulation accurate to 10 ?
>> n=LMtheorem050302(alpha,(1e-5)/4,pi/4) 
n =
 2.9199e+011 
If every Monte Carlo trial took 1 millisecond, this Monte 
Carlo simulation would take 9 years.  Obviously, there 
are more efficient ways to estimate π. 

We can use this Nahin’s π simulation to double check 
our calculations.  By reducing the d value in Theorem 
5.3.2, we can find a reasonable number of trials to test our equations (and to reinforce the idea of 
what a p value means) 
>> n=LMtheorem050302(0.05,0.1/4,pi/4) 
n =
 1.0360e+003 

This indicates that if we ran Nahin’s pi simulation 1036 times, we should expect to see about 5% 
of the Monte Carlo simulations producing estimates of π differing from the true value of π by 0.1 
or more (note that due to the way Nahin set up the problem, we must divide this d=0.1 by 4). 

Figure 26. Figure 5.1 from Nahin, 
showing how the value of pi can be 
found by placing darts on a 1 x 1 
grid and counting the number of 
darts within 1 unit of the origin. 
pi=4*successes/trials. 
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We can apply Theorem 5.3.2 once more to find out how many times we have to run Nahin’s π 
simulation (with a sample size of 1036) to get a p value differing from the expected value by no 
more than 0.005: 
>> n=LMtheorem050302(0.05,.005,0.05) 
n =
 7.2988e+003 

I programmed this with 7300 Monte Carlo trials and called the simulation edgpisim.m I made 
one or two modifications of Nahin’s pisim.m 

It was reassuring that edgpisim.m with 1036 and 7300 for the Monte Carlo sample sizes 
produces p values very close to 0.05. Each simulation takes only about 2 seconds on my Pentium 
4. 

%edgpisim.m created by PJNahin for "Duelling Idiots"(10/22/98) 

%This m-file estimates pi by randomly tossing darts at the 

%unit square and counting how many land inside a quarter­

%circle with unit radius contained in the square. 

% 

% 

rand('state',100*sum(clock)) %set new seed for generator; 

%initialize number of darts 

%inside quarter-circle region; 

Trials=7300; 

kount=0; 

for j=1:Trials 

x=rand(2,1036);
 
x=x.^2;
 
darts=sum(sum(x)<1);
 
pi_estimate=4*darts/1036;
 
if abs(pi_estimate-pi)>=0.1
 

kount=kount+1; 

end 

end 

p=kount/Trials 

disp('Applying Theorem 5.3.2, this estimate has a 95% probability of being within 0.005 of 0.05') 

Some final thoughts 

Monte Carlo simulations, if properly designed, produce realizations of the underlying probability 
model that is being tested with both nonparametric and parametric statistics.  The p-value, which 
is the end result of many of the standard tests, is providing an estimate of what the results of a 
Monte Carlo trial would have been. If you encounter major differences between the p values 
from a parametric test and the results of a Monte Carlo simulation, my recommendation is to 
trust the Monte Carlo simulation (after you’ve checked your program for errors of course). 

In my area of ecology, I became familiar with the utility of Monte Carlo simulations when I was 
analyzing a paper on spatial patterns in the deep sea benthos, the animals that live in mud and 
sand.  Two noted benthic ecologists published a paper in one of the premier oceanography 

http:n=LMtheorem050302(0.05,.005,0.05
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journals describing strong spatial pattern in the deep sea. They sampled the deep sea with a 
coring device that took 64 samples of mud simultaneously in an 8 x 8 array. They found single 
individuals of a species of crustacean in 3 adjacent cores in the 64-core array and stated that the 
probability of finding that pattern or one more significant is P < 0.00002 using Cliff & Ord’s 
[1973] significance tests for the Moran’s I spatial autocorrelation statistic, a spatially weighted 
version of Pearson’s correlation coefficient: 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 

The problem:	 Is the significance level of P<.00002, using Cliff & Ord’s (1973) parametric 
statistical test for Moran’s I correct? 

There are 64 choose 3 combinations (64!/(61!3!)=41664) possible with 3 cores (See Larsen & 
Marx, 2006, p. 107 for definition of combinations) , each containing a single individual of this 
species, placed in a 64-core array.  88 of these combinations produce patterns with Moran’s I 
statistics greater than the one observed.  The exact probability for this pattern 88/41664 = 
11/5208 � .00211 This is over 100 times higher the value calculated using Cliff & Ord’s 
normal approximation. 

A Monte Carlo simulation of the data, performed by randomly permuting the rows and columns 
of the 8x8 matrix with a calculation of the Moran’s I spatial statistic after each Monte Carlo 
trial, produced results that rapidly converged on the p value of 0.002, not on the erroneous 
parametric value of 0.00002. 

I went back and read Cliff & Ord’s key papers describing how they had developed their 
significance tests for Moran’s I spatial autocorrelation statistic.  They’d developed their 
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equations using Monte Carlo simulations. But, they usually used only 300 Monte Carlo trials. 
Their p values were judged adequate only to p=0.01 (consistent with the calculations above). 
They were forthright that their equations were just approximations to the underlying Monte 
Carlo process and concluded,“We do not recommend these approximations when...binary data 
are used except when the data are nearly symmetric and the lattice size is fairly large (n >50).” 
The above data, consisting of 61 0's and 3 1's are certainly binary and asymmetric. The p value 
of 0.00002 should have never been published. 

Unfortunately, Monte Carlo simulations can not be used to test many of the hypotheses that 
you’ll encounter.  Parametric statistics, especially regression & ANOVA, are the only readily 
available methods for analyzing many types of somewhat complex data.  However, when the two 
approaches can be compared, parametric statistics usually produce results strikingly similar to 
that produced by Monte Carlo simulation.  In my experience, when there is a major discrepancy 
between the parametric result and the Monte Carlo simulation, it can be traced to an underlying 
assumption of the parametric test not being met. 

Example 5.3.4 

How large should a sample be to have a 98% probability of being within the true proportion, p.
 
We’ll use my Matlab m.file Theorem050302_4th.m
 
n=LMtheorem050302_4th(0.02,.05)
 
This produces the answer that the sample would have to be 543.
 
If we knew that no more than 20% of the children are inadequately immunized, we can enter an
 
additional proportion in the function:
 
n=LMtheorem050302_4th(0.02,.05,0.2)
 
This formula reduces the variance of the expected proportion because the variance of p=0.2 is
 
much less than p=0.5. The answer is that only 348 samples are required.
 

Interpreting the significance of polls 

In a March 2, 2011 NBC/Wall Street Journal poll, pollsters asked 282 likely republican primary 
voters who they favored for the 2012 Republican nomination for president. The results were 
Huckabee 25%, Romney 21%, Gingrich 13% Palin 12%, Ron Paul 6% and Tim Pawlenty 3%. I 
wrote a program pollsig.m to analyze polls such as this. It is called by 
[ME,D,Dprob,halfCI]=pollsig(282,[.25 .21 .13 .12 .6 .3], 1e4,1) 
Pollsig reports the margin of error as 5.9% and then analyzes the difference between the two 
leading candidates. The difference in proportions between the two leading candidates was 4%. 
Based on a Monte Carlo simulation, the probability of observing a 4% difference by chance is 
0.31. The half 95% CI for the difference of 4% is 4 ± 7.8% 

Pollsig.m takes into account that polling results are not independent. Candidate A’s favorability 
is negatively correlated with the favorability of the other candidates. This negative covariance 
will produce a margin of error for the difference that is always between one and two times the 
margin of error for the poll. 

http:ME,D,Dprob,halfCI]=pollsig(282,[.25
http:n=LMtheorem050302_4th(0.02,.05
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A March 4, 2011 Gallup poll of 550 Fox News viewers had Huckabee at 18%, Romney at 17%
 
and Palin & Gingrich tied at 13%. These data would be entered into pollsig.m
 
[ME,D,Dprob,halfCI]=pollsig(550,[.18 .17 .13 .13], 1e4,1)
 

The results are that the margin of error for a poll of size 550 is 4.2% (rounded up to 5% in the
 
Politco news article. A Monte Carlo simulation based on 10000 trials showed that under the null
 
hypothesis of equal proportions, and 10000 trials, the 2-sided P of observing a 1.00% difference
 
by chance = 0.693. Lower 95% confidence limit, median, and upper 95% confidence limit based
 
on 10000 trials. The difference between Huckabee and Romney should be reported as 1% ± 5%.
 
Section 5.9 in Larsen & Marx (2006) is simply wrong. They argue that in a poll with a margin of
 
error of 5% that candidate A with a 52% to 48% lead over candidate B is a near certainty to win.
 
This is false. First, we can use Theorem 5.3.2 to find out how many individuals would have to be
 
polled to produce a 5% margin of error. I’ve programmed that theorem;
 
n=LMtheorem050302_4th(.05,.05)
 
The answer is 384.1459. We now use pollsig to calculate the probability that candidate A is even
 
ahead of candidate B given the uncertainty in the polls. 

pollsig(384,[0.52 0.48],1e5,1)
 
This produces that the probability of observing a difference of 4% or more by chance alone is
 
44.5%. I would not call a p value of 0.445 as a near certainty that the two candidates are
 
different. This estimate was based on drawing 100,000 polls of size 384 from a population in
 
which the candidates were equal. In 44.5% of those polls one candidate or the other had a 4%
 
lead. One can analyze the differences and calculate the 95% confidence limit for the difference.
 
It is 4% ± 9.9%.  This result would have been different if there was another candidate in the race
 
drawing 20% of the vote, leaving the top two candidates with 42% and 38%. The difference
 
would be 4% ± 9% and the two-sided p value of observing a difference of 4% would be 37.5%.
 
Imagine yet another candidate drawing an additional 20% of the vote so that the top 4 vote
 
getters garnered [.32 .28 .2 .2]. The two-sided p value for the null hypothesis of candidate A and
 
B being tied is now 31%, with the 4% difference having a margin of error of 7.7%. Larsen &
 
Marx (2006) state, “Here, a 4% lead for Candidate A in a poll that has a 5% margin of error is
 
not a “tie” — quite the contrary, it would more properly be interpreted as almost a guarantee that
 
Candidate A will win.” I wouldn’t consider a p value of 0.435 as a p value upon sufficient to
 
guarantee a winner. 

function [ME,D,Dprob,halfCI]=pollsig(N,V,Trials,details)
 
% How significant are differences in poll results?
 
% format [ME,D,Dprob,halfCI]=pollsig(N,V,Trials,details);
 
% Input:
 
% Required:
 
% N = Number of individuals polled
 
% V=  Column or row vector with proportion of responses, 

% need not sum to 1, but sum(V)<1;
 
% In this implementation only the two most common items will be
 
% tested.
 
% Optional:
 
% Trials=Number of Monte Carlo trials used to judge significance
 
% if Trials not specified, 1e4 trials will be used
 

http:pollsig(384,[0.52
http:n=LMtheorem050302_4th(.05,.05
http:ME,D,Dprob,halfCI]=pollsig(550,[.18
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% if Trials=0, then the covariance formula will be used to judge 
% significance 
% details=0, suppress all output within the m.file. 
% Output: 
% ME=Margin of Error for the poll 
% D=difference in proportions, length(V) x length(V) symmetric matrix. 
% Dprob=two-sided p value for test of equality of proportions of the 2 % 
% most common items 
% Dprob will have a minimum value of 1/Trials 
% halfCI=half the 95% CI for difference in proportions of the two most 
% common items. 
% Reference: Larsen & Marx (2006) Introduction to Mathematical Statistics 
% 4th Edition p. 372 

% Written in 2003 for EEOS601 by Eugene.Gallagher@umb.edu 
% Dept of Environmental, Earth & Ocean Sciences. 

if nargin<4
    details=1;
    MC=1;
    if nargin<3
        Trials=1e4;
    elseif Trials==0
        MC=0;

 end 
end 

% Calculate Margin of Error, p. 372, Larsen & Marx (2006) 4th edition 
ME=norminv(0.975)/(2*sqrt(N)); 

if details
    fprintf('The margin of error for a poll of size %d is %3.1f%%.\n',...
        N,ME*100); 
end 

% Monte Carlo simulation 

if details;
    fprintf('\nMonte Carlo simulation based on %d trials:\n',Trials); 
end 
V=V(:); % Change V to a column vector 
V=flipud(sort(V));V=V(1:2);  % This m.file will only calculate significance
                             % for top two categories. 
tallys=zeros(Trials,2); % A column vector with rows=Trials & 2 columns; 
                        % tallys differences 
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tallyHo=zeros(Trials,2);% This will store the results for testing Ho:
 % p1=p2; 

ExpP=mean(V); 
for i=1:Trials

 poll=rand(N,1); % Creates a vector with uniformly distributed
                        % random numbers on the interval 0,1

    tallys(i,1)=sum(poll<=V(1));

    tallys(i,2)=sum( (poll>V(1)) & (poll <= (V(1)+ V(2))) );

    tallyHo(i,1)=sum(poll<=ExpP);

    tallyHo(i,2)=sum( (poll>ExpP) & (poll <= 2*ExpP));
 
end 
DifferenceHo = (tallyHo(:,1) - tallyHo(:,2))/N; % Calculate the differences 
% for all Trials under Ho: p1=p2 
D=abs(V(1)-V(2)); 
Dprob=max([1 sum(abs(DifferenceHo)>=D)])/Trials; 
if details & Dprob<0.001  % change the format so that it is in full form 
                          % only for low p values:

 fprintf(...
 'Under the null hypothesis of equal proportions and %d trials,\n',Trials)
 fprintf(...

 'the 2-sided prob. of observing a %5.3f%% difference by chance = %d\n',...
        D*100,Dprob); 
elseif details

 fprintf(... 
'Under the null hypothesis of equal proportions, and %d trials,\n',... 
Trials)

 fprintf(... 
'the 2-sided P of observing a %4.2f%% difference by chance = %5.3f\n',...
        D*100,Dprob); 
end 
Diff = (tallys(:,1) - tallys(:,2))/N; 
% 95% CI via Monte Carlo simulation 
sortedDiff=sort(Diff); 
lMC95CIpi=floor(0.025*Trials); % find the index for the lower 95% cutoff 
uMC95CIpi=ceil(0.975*Trials);  % find the index for the upper 95% cutoff 
medpi=round(0.5*Trials);  % find the median, should be close to or 
                               % identical to the expected value. 
% Save the three outputs in the row vector DLowExpUp 
DLowExpUp=[sortedDiff(lMC95CIpi) sortedDiff(medpi) sortedDiff(uMC95CIpi)]; 
halfCI=(DLowExpUp(3)-DLowExpUp(1))/2; 
if details

 fprintf(... 
'\nLower 95%% confidence limit, median, and upper 95%% confidence limit based on %d 
trials:\n',Trials)

 fprintf(... 
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'Lower 95%% CI  \tMedian \tUpper 95%% CI \n \t%4.2f%% \t\t%4.2f%% \t%4.2f%% \n',...
       DLowExpUp(1)*100,DLowExpUp(2)*100,DLowExpUp(3)*100)
   fprintf('\nDifference +/- half 95%% CI:  %4.1f%% +/- %4.1f%%\n',D*100,halfCI*100) 
end 

Annotated outline (with Matlab scripts) for Larsen & Marx 
Chapter 5 

5 Estimation 
Ronald Aylmer Fisher (1880-1962) 

5.1 Introduction 

Figure 5.1.1
 
% LM Fig050101_4th .m
 
% LM Fig050101_4th
 
% Plot of Poisson pdf at lambda=1 & lambda = 4
 
% Example of a stem plot
 
% Written by E. Gallagher, Eugene.Gallagher@umb.edu
 
% Written 10/28/10; Revised 3/3/11
 
%
 
k1=0:8;pxk1=poisspdf(k1,1);
 
k4=0:12;pxk4=poisspdf(k4,4);
 
subplot(1,2,1);
 
h1=stem(k1,pxk1,'Marker','none');
 
set(h1,'LineWidth',3);
 
ylabel('P_x(k)','FontSize',20)
 
xlabel('k','FontSize',20)
 
text(2.5, 0.25,'lambda=1','FontSize',18)
 
title('Figure 5.1.1','FontSize',22)
 
axis([-.5 8.5 0 0.4]);
 
subplot(1,2,2);
 
h2=stem(k4,pxk4,'Marker','none');
 
xlabel('k','FontSize',20)
 
axis([-.5 12.5 0 0.4])
 
text(4.5, 0.25, 'lambda = 4','FontSize',18)
 
set(h2,'LineWidth',3)
 
figure(gcf);pause
 

Figure 26. R. A. Fisher 

Figure 27. Figure 5.1.1 P 344 

Example 5.1.1 A coin that may not necessarily be fair is handed to you and you are to determine 
the probability that the coin will come up heads. In three tosses, the sequence HHT is observed. 
As our estimate of p, choose the value that maximizes the probability of the sample. By 
inspection of Figure 5.1.2, we see that the value that maximizes the probability of the sample is 
2/3. The value that maximizes the likelihood is the value for which the derivative is zero. In 
Matlab: solve(diff(p.^2*(1-p))). 

mailto:Eugene.Gallagher@umb.edu
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5.2	 ESTIMATING PARAMETERS: THE METHOD OF MAXIMUM 
LIKELIHOOD AND THE METHOD OF MOMENTS 
5.2.1 The Method of Maximum Likelihood 

Definition 5.2.1 Let k , k , ..., k  be a random sample of size n from the discrete pdf p (k; θ)1 2 n	 X 

where θ is an unknown parameter. The likelihood function, L(θ), is the product of the pdf 
evaluated at the n k ’s. That is i

If y , y , ..., y  is a random sample of size n from a continuous pdf, fy(y;θ), where θ is an1 2 n

unknown parameter, the likelihood function is written 

Definition 5.2.2 Let  and 

corresponding to random samples k , k , ..., k  and y , y , ..., y , drawn from the discrete pdf 1 2 n 1 2 n

p (k; θ) and continuous pdf f (y; θ), respectively, where θ is an unknown parameter. In each X	 Y 

case let θ  be a value of the parameter such that L(θ ) � L(θ) for all possible values of θ. Then θe e	 e 

is called a maximum likelihood estimate for θ. 
5.2.1.1 Applying the Method of Maximum Likelihood 

Example 5.2.1 
% LMEx050201_4th.m 
% An example of binomial MLE fitting & a difference in the way 
% Mathworks & Larsen & Marx define the geometric distribution 
% From Larsen & Marx (2006). Introduction to Mathematical Statistics, 
% Fourth Edition. page 348-349 
% Written by Eugene.Gallagher@umb.edu 10/28/10; revised 3/3/11 
% Tom Lane on 10/29/10: "unfortunately it looks like your text and MATLAB 
% use different definitions for the [geometric] distribution. Our version 
% has positive probability on 0,1,2,.... Yours starts at 1. The version we 
% use is the one described in "Univariate Discrete Distributions" by 
% Johnson, Kotz, and Kemp. Wikipedia shows both versions. 
X=[3 2 1 3]; [Phat,PCI] =mle(X,'distribution','geometric') 
% Matlab gives the wrong answer, because it uses a different definition 
% of the geometric distribution, defined for k=0, 1, 2, 3 ... inf 
% Larsen & Marx use a form defined for positive k: k=1, 2, 3, ... inf 
% Larsen and Marx define the geometric distribution as the number of 
% trials before a success, so k=0 is not part of the domain, but Mathworks 
% defines the geometric distribution as the number of failures 
% before a success, allowing k=0 to be defined. 
% The correct MLE for L & M is 4/9 
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% 10/29 email from Tom Lane, Mathworks, says that I should call
 
% mle using
 

[Phat,PCI] =mle(X-1,'distribution','geometric');
 
format rat;
 
fprintf('The maximum likelihood estimate for p is\n')
 
disp(Phat)
 
format
 
fprintf('with 95%% CIs: [%5.3f %5.3f]\n',PCI);
 
% Just following along the text's derivation (p. 348) of the MLE:
 
syms p; s=diff(5*log(1-p)+4*log(p),p)

 solve(s,p)

 % find the second derivative and plot;

 s2=diff(diff(5*log(1-p)+4*log(p),p))

 % This plot shows that the second derivative is negative for all 0<p<1

 ezplot(s2,[0 1]);figure(gcf);pause
 
% From Larsen & Marx (2006) p. 349 provides the MLE formula
 
n=length(X);Phat=n/sum(X)
 

5.2.1.2 Comment (p. 349) on the distinction between maximum likelihood 
estimate and estimator 

A maximum likelihood estimate is a number (or refers to a number), but a maximum likelihood 
estimator is a random variable... Maximum likelihood estimators, such as , have pdfs, 
expected values, and variances; maximum likelihood estimates, such as p , have none of those e

statistical properties. 

Example 5.2.2 
% LMEx050202_4th
 
% An example of customized pdf fitting.
 
% From Larsen & Marx (2006). Introduction to Mathematical Statistics,
 
% Fourth Edition. page 350
 
% Dept. Environmental, Earth & Ocean Sciences
 
% Written by Eugene.Gallagher@umb.edu 10/29/10
 
% 

% Fit the custom pdf using a Matlab anonymous function @
 
%
 
X=[9.2 5.6 18.4 12.1 10.7];
 
fyytheta=@(y,theta)(1./theta.^2.*y.*exp(-y./theta));
 
theta=10; % This is an initial guess; 

[theta, thetaCI]= mle(X,'pdf',fyytheta,'start',theta,'lowerbound',0)
 
% Note that must specify the lower bound for theta is 0 as specified
 
% in the problem or negative pdf's are produced
 
% Here is a plot of the pdf for the maximum likelihood estimator.
 
ezplot('1./5.6.^2.*y.*exp(-y./5.6)',[0.001 100])
 
figure(gcf);pause
 

y=0.001:.01:101;
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fyy=1./theta.^2.*y.*exp(-y./theta);
 
fX=1./theta.^2.*X.*exp(-X./theta);
 
plot(y,fyy,'LineWidth',2);
 
axis([0 51 -0.002 0.07])
 
ax1=gca;
 
hold on
 
h1=stem(X,fX,':k','filled');
 
set(h1,'LineWidth',2);
 
s=sprintf('Example 5.2.2, theta=%3.1f, Likelihood=%7.3g',theta,prod(fX));
 
title(s,'FontSize',22)
 
figure(gcf);pause
 
hold off
 

% Plot a different value of theta
 
thetan=theta*2;
 
y=0.001:.01:101;
 
fyy=1./thetan.^2.*y.*exp(-y./thetan);
 
X=[9.2 5.6 18.4 12.1 10.7];
 
fX=1./thetan.^2.*X.*exp(-X./thetan);
 
plot(y,fyy,'LineWidth',2);
 
axis([0 101 -0.002 0.04])
 
ax1=gca;
 
hold on
 
h1=stem(X,fX,':k','filled');
 
set(h1,'LineWidth',2);
 
s=sprintf('Example 5.2.2, theta=%3.1f, Likelihood=%7.3g',thetan,prod(fX));
 
title(s,'FontSize',22)
 
figure(gcf);pause
 
hold off
 
% Plot a different value of theta
 
thetan=theta/2;
 
y=0.001:.01:26;
 
fyy=1./thetan.^2.*y.*exp(-y./thetan);
 
X=[9.2 5.6 18.4 12.1 10.7];
 
fX=1./thetan.^2.*X.*exp(-X./thetan);
 
plot(y,fyy,'LineWidth',2);
 
axis([0 26 -0.002 0.14])
 
ax1=gca;
 
hold on
 
h1=stem(X,fX,':k','filled');
 
set(h1,'LineWidth',2);
 
s=sprintf('Example 5.2.2, theta=%3.1f, Likelihood=%7.3g',thetan,prod(fX));
 
title(s,'FontSize',22)
 
figure(gcf);pause
 
hold off
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%--------------------------­
% What would happen if an additional observation of 30 were observed?
 
X=[X 30]; 

[theta, thetaCI]= mle(X,'pdf',fyytheta,'start',theta,'lowerbound',0)
 
% Note that must specify the lower bound for theta is 0 as specified
 
% in the problem or negative pdf's are produced
 
y=0.001:.01:101;
 
fyy=1./theta.^2.*y.*exp(-y./theta);
 
fX=1./theta.^2.*X.*exp(-X./theta);
 
plot(y,fyy,'LineWidth',2);
 
axis([0 51 -0.002 0.07])
 
ax1=gca;
 
hold on
 
h1=stem(X,fX,':k','filled');
 
set(h1,'LineWidth',2);
 
s=sprintf('Example 5.2.2, theta=%3.1f, Likelihood=%7.3g',theta,prod(fX));
 
title(s,'FontSize',22)
 
figure(gcf);pause
 
hold off
 
% Plot old theta of 5.6
 
thetan=5.6;
 
fyy=1./thetan.^2.*y.*exp(-y./thetan);
 
fX=1./thetan.^2.*X.*exp(-X./thetan);
 
plot(y,fyy,'LineWidth',2);
 
axis([0 51 -0.002 0.07])
 
ax1=gca;
 
hold on
 
h1=stem(X,fX,':k','filled');
 
set(h1,'LineWidth',2);
 
s=sprintf('Example 5.2.2, theta=%3.1f, Likelihood=%7.3g',thetan,prod(fX));
 
title(s,'FontSize',22)
 
figure(gcf);pause
 
hold off
 
% Plot a different value of theta
 
thetan=theta*2;
 
y=0.001:.01:101;
 
fyy=1./thetan.^2.*y.*exp(-y./thetan);
 
fX=1./thetan.^2.*X.*exp(-X./thetan);
 
plot(y,fyy,'LineWidth',2);
 
axis([0 101 -0.002 0.04])
 
ax1=gca;
 
hold on
 
h1=stem(X,fX,':k','filled');
 
set(h1,'LineWidth',2);
 
s=sprintf('Example 5.2.2, theta=%3.1f, Likelihood=%7.3g',thetan,prod(fX));
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title(s,'FontSize',22)
 
figure(gcf);pause
 
hold off
 
% Plot a different value of theta
 
thetan=theta/2;
 
y=0.001:.01:51;
 
fyy=1./thetan.^2.*y.*exp(-y./thetan);
 
fX=1./thetan.^2.*X.*exp(-X./thetan);
 
plot(y,fyy,'LineWidth',2);
 
axis([0 51 -0.002 0.12])
 
ax1=gca;
 
hold on
 
h1=stem(X,fX,':k','filled');
 
set(h1,'LineWidth',2);
 
s=sprintf('Example 5.2.2, theta=%3.1f, Likelihood=%7.3g',thetan,prod(fX));
 
title(s,'FontSize',22)
 
figure(gcf);pause
 
hold off
 

5.2.2 Using Order Statistics as Maximum Likelihood Estimates 

Example 5.2.3 - not easily programmed in Matlab 

Case Study 5.2.1 
% LMcs050201_4th.m
 
% An example of MLE Poisson fitting
 
% Written by Eugene.Gallagher@umb.edu 10/29/10, revised 3/3/11
 
% Solution of Larsen & Marx Example 5.2.1
 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th Edition
 
% Page 352-353
 
% Requires the statistics toolbox
 
%
 
X=[zeros(237,1);ones(90,1);2*ones(22,1);3*ones(7,1)];
 
[LAMBDAHAT, LAMBDACI] = poissfit(X)
 
fprintf(...
 
'The MLE estimate of lambda is %5.3f with 95%% CI: [%5.3f %5.3f]\n',...
 
LAMBDAHAT,LAMBDACI)
 
OF=[237 90 22 7];
 
k=[0:3];
 
EF=sum(OF)*poisspdf(k,LAMBDAHAT);
 
% Change the 4th category pdf for k=3, to pdf for k=3:inf;
 
EF(4)=EF(4)+(356-sum(EF));
 
% Print tabular output
 
s=['0 ';'1 ';'2 ';'3+'];
 
D=num2str([OF' EF']);
 
fprintf('\n  Table 5.2.1\n')
 
fprintf('                            Observed  Expected\n')
 
fprintf('Number of Major Changes  Frequency Frequency\n')
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disp([repmat(' ',4,10) s repmat(' ',4,17) D])
 
% Plot the data using Case Study 3.3.1 as a model
 
h1=bar(0:3,[OF;EF]',1,'grouped')
 
legend('Observed','Poisson Expectation','NorthEast','FontSize',20)
 
xlabel('Number of Major Changes','FontSize',20)
 
ylabel('Frequency','FontSize',20)
 
s=sprintf('Case Study 5.2.1, lambda=%6.4f',LAMBDAHAT)
 
title(s,'FontSize',22);figure(gcf);
 

5.2.3 Finding MLE’s when more than one parameter is unknown 

Example 5.2.4 

Questions p 355-357 
5.2.4 The method of moments [Can’t skip, fitting storm data] 

Introduced by Pearson. More tractable than maximum likelihood when probability model has 
multiple parameters. 
Definition 5.2.3 

Example 5.2.5. Should have but couldn’t get mle solution to work. 

Case Study 5.2.2 
5 % LMcs050202 
% An example of pdf fitting. 
% Based on Gallagher's LMEx050202.m 
% From Larsen & Marx (2006). Introduction to Mathematical Statistics, 
% Fourth Edition. page 359-362 
% Note that LM use this example to demonstrate method of moments 
% Dept. Environmental, Earth & Ocean Sciences 
% Written by Eugene.Gallagher@umb.edu 1/1/2010 
% 
% Fit the Gamma pdf to maximum 24-h precipitation levels for 36 storms from 
% 1900-1969. 
% 
hold off; clf 
RAIN=[31 2.82 3.98 4.02 9.5 4.5 11.4 10.71 6.31 4.95 5.64 5.51 13.4 9.72 ...

 6.47 10.16 4.21 11.6 4.75 6.85 6.25 3.42 11.8 0.8 3.69 3.1 22.22 ...
 7.43 5.0 4.58 4.46 8 3.73 3.5 6.2 0.67]; 

[PARMHAT,PARMCI] = gamfit(RAIN) 
fprintf(... 
'The MLE estimate of r is %5.3f with 95%% CI: [%5.3f %5.3f]\n',... 
PARMHAT(1),PARMCI(1,1),PARMCI(2,1)) 
fprintf('Larsen & Marx find r=1.60, so barely within the 95%% CI\n') 
fprintf('Matlab''s gamma b is Larsen & Marx''s 1/lambda\n') 
fprintf(... 
'The MLE estimate of lambda is %5.3f with 95%% CI: [%5.3f %5.3f]\n',... 
1/PARMHAT(2),1/PARMCI(2,2),1/PARMCI(1,2)) 
fprintf('Larsen & Marx find lambda=0.22, so within the 95%% CI\n') 

http:lambda=0.22
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Binsize=4; % maximum of 16;
 
X=0:32;y=gampdf(X,PARMHAT(1),PARMHAT(2));plot(X,y,'--b');figure(gcf)
 
% Histogram
 
EDGES=0:Binsize:32;N = histc(RAIN,EDGES);
 
bar(EDGES,N./(sum(N)*Binsize),'histc');title('Figure 5.2.3','FontSize',20)
 
xlabel('Maximum 24-hour rainfall (in.)','FontSize',16); 

ylabel('Density','FontSize',16);
 
figure(gcf);
 
hold on
 
x=0:0.1:32;
 
y=gampdf(x,PARMHAT(1),PARMHAT(2));
 
% Need to multiply the gamma pdf by binsize
 
plot(x,y,'--r','Linewidth',2)
 
figure(gcf);pause
 
hold off
 
% generate a random rainfall sequence
 
RandRain=gamrnd(PARMHAT(1),PARMHAT(2),36,1);
 
Binsize=4;
 
EDGES=0:Binsize:ceil(max(RandRain));N = histc(RandRain,EDGES);
 
bar(EDGES,N./(sum(N)*Binsize),'histc');
 
xlabel('Maximum 24-hour rainfall (in.)','FontSize',16);
 
ylabel('Density','FontSize',16);
 
title('Randomly generated rainfall','FontSize',20); figure(gcf);
 
hold on
 
x=0:0.1:ceil(max(RandRain));
 
y=gampdf(x,PARMHAT(1),PARMHAT(2));
 
% Need to multiply the gamma pdf by binsize
 
plot(x,y,'--r','Linewidth',2)
 
figure(gcf);pause
 
hold off
 

Questions 362-363 
5.3 INTERVAL ESTIMATION p. 363 

Example 5.3.1 
% LMEx050301_4th.m 
% Simulation of Confidence intervals; 50 CIs each of size n = 4 were drawn 
% from the normal pdf 
% From Larsen & Marx  (2006) Introduction to Mathematical Statistics, 
% Fourth Edition. page 364 
% Dept. Environmental, Earth & Ocean Sciences 
% Written by Eugene.Gallagher@umb.edu 10/29/10, revised 1/24/11, 3/4/11 
% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html 
% Call the inverse of the cumulative normal distribution 
% for a 95% CI, 0.025 of the tail should be to the right, so find 
% the Z value for 97.5% of the cumulative normal distribution, or 1.96 
Z=norminv(0.975); 
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X=[6.5 9.2 9.9 12.4];meanX=mean(X);sigma=0.8;n=length(X); 
CI=[meanX-Z*sigma/sqrt(n);meanX+Z*sigma/sqrt(n)] 
fprintf('The mean of X is %4.2f and the 95%% CI is [%4.2f %4.2f]\n',...
    meanX,CI(1),CI(2));
 % Plot Figure 5.3.1 
mu=0; 
sigma=1; 
X=-3.5:0.1:3.5; 
Y = normpdf(X,mu,sigma); 
plot(X,Y,'--r','LineWidth',2); 
axis([-3.55 3.55 0 0.41]); 
title('Figure 5.3.1','FontSize',20); 
ax1=gca; 
xlabel('Z','FontSize',16), 
ylabel('f_z(z)','FontSize',16); 
ax1=gca; 
set(ax1,'XTick',[-1.96 0 1.96] ,'FontSize',16,...

 'XTickLabel',{'-1.96','0','1.96'},'FontSize',18) 
set(ax1,'ytick',0:.1:0.4,'FontSize',16) 
hold on; 
xf=-1.96:.01:1.96;yf=normpdf(xf,mu,sigma); 
fill([-1.96 xf 1.96]',[0 yf 0]',[.8 .8 1]) 
text(1.6,0.25,'Area = 0.95','FontSize',20) 
title('Figure 5.3.1','FontSize',22) 
figure(gcf);pause 
hold off; 
% Figure 5.3.2 
% Generate n random samples of size 4 with mean 10 and sigma=8 
% Larsen & Marx use n=50; 
MU=10;SIGMA=0.8;  % Don't change unless plot axes are changed too. 
fprintf('mu =%5.3f and sigma = %5.3f\n',MU,SIGMA); 
n=100; % Larsen & Marx used 50 
samsize=4;               % Larsen & Marx used 4 
R = normrnd(MU,SIGMA,samsize,n); 
[r,c]=size(R); 
mR=mean(R)'; 
CIs=[mR+Z*SIGMA/sqrt(r) mR-Z*SIGMA/sqrt(r)]; 
% first row of CIs is the upper and 2nd row is the lower CI for 50 
% random samples of size 4; 
i=find(~(CIs(:,1)>=10 & CIs(:,2)<=10)); 
j=find(CIs(:,1)>=10 & CIs(:,2)<=10); 
fprintf('With sample size %d, of %2.0f CI''s, \n',samsize,n) 
fprintf('%2.0f (%5.3f%%) didn''t contain mu=10.\n',length(i),...
    100*length(i)/n) 
if ~isempty(i) & n<1000 
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    disp(CIs(i,:)) 
end 
% display 5.3.2 
X=[1:n]';Y=repmat(MU,n,1); 
plot(X,Y,'--b');hold on 
errorbar(X(i),mR(i),CIs(i,1)-mR(i),CIs(i,2)-mR(i),'-r'); 
errorbar(X(j),mR(j),CIs(j,1)-mR(j),CIs(j,2)-mR(j),'-g'); 
s=sprintf('Possible 95%% confidence intervals, sample size=%d',samsize); 
xlabel(s,'FontSize',18), 
ylabel('True mean','FontSize',18);title('Figure 5.3.2','FontSize',22) 
if samsize < 4
    axis([0-0.02*n 1.02*n 6.9 13.1])

    set(gca,'Ytick',7:13,'FontSize',18)
 
elseif samsize<10
    axis([0-0.02*n 1.02*n 7.9 12.1])
    set(gca,'Ytick',8:12,'FontSize',18) 
else
    axis([0-0.02*n 1.02*n 8.4 11.6])
    set(gca,'Ytick',8.5:.5:11.5,'FontSize',18) 
end 
figure(gcf);pause;hold off 
Comment 

Case Study 5.3.1 
% LMcs050301_4th.m 
% Confidence intervals 
% From Larsen & Marx (2006). Introduction to Mathematical Statistics, 
% Fourth Edition. page 367 
% Dept. Environmental, Earth & Ocean Sciences 
% Written by Eugene.Gallagher@umb.edu 10/29/10, revised 3/4/11 
DATA=[141 148 132 138 154 142 150

 146 155 158 150 140 147 148

 144 150 149 145 149 158 143

 141 144 144 126 140 144 142

 141 140 145 135 147 146 141

 136 140 146 142 137 148 154

 137 139 143 140 131 143 141

 149 148 135 148 152 143 144

 141 143 147 146 150 132 142

 142 143 153 149 146 149 138

 142 149 142 137 134 144 146

 147 140 142 140 137 152 145];
 

DATA=DATA(:); % convert to a single column vector 
meanD=mean(DATA);sigma=6; 
CI=[meanD-norminv(0.975)*sigma/sqrt(length(DATA)) ...
    meanD+norminv(0.975)*sigma/sqrt(length(DATA))]; 

mailto:Eugene.Gallagher@umb.edu
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fprintf('The mean is %4.1f with CI: [%4.1f %4.1f]\n',meanD,CI)
 
% Could have been obtained using normfit.
 
[MUHAT,SIGMAHAT,MUCI,SIGMACI]=normfit(DATA);
 
fprintf('Using normfit.m:\n')
 
fprintf('The mean is %4.1f with CI: [%4.1f %4.1f]\n',MUHAT,MUCI)
 

% Plot the histogram with superimposed pdf, from LMcs050202_4th.m
 
Binsize=4;
 
EDGES=124:Binsize:164;N = histc(DATA,EDGES);
 
bar(EDGES,N,'histc')
 
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
 
title('Case Study 5.3.1','FontSize',22)
 
xlabel('Maximum Head Breadths (mm)','FontSize',20); 

ylabel('Frequency','FontSize',20);
 
figure(gcf);
 
hold on
 
x=124:0.1:164;
 
y=normpdf(x,MUHAT,6)*length(DATA)*Binsize;
 
plot(x,y,'--r','Linewidth',3)
 
v=axis;
 
plot([132.4 132.4]',[0 v(4)]','-.b','LineWidth',3)
 
figure(gcf);pause
 
hold off
 

5.3.1 Confidence interval for the binomial parameter, p 
Theorem 5.3.1 

Case Study 5.3.2 
% LMcs050302_4th 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition 
% Case Study 5.3.2 p.370 
% Confidence limits for binomial proportion, k/n 
% input alpha, e.g., alpha=0.05 for 95% CI's 
% output CI    [Lower CI p Upper CI] 
% Written by Eugene.Gallagher@umb.edu 
% 
alpha=0.05; 
CI=LMTheorem050301_4th(713,1517,alpha) 
LMTheorem050301_4th 
function CI=LMTheorem050301_4th(k,n,alpha) 
% format CI=LMtheorem050301_4th(k,n,alpha) 

http:alpha=0.05
mailto:Eugene.Gallagher@umb.edu
http:alpha=0.05
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% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
 
% Theorem 5.3.1 p.369
 
% Confidence limits for binomial proportion, k/n
 
% input alpha, e.g., alpha=0.05 for 95% CI's
 
% output CI    [Lower CI p Upper CI]
 
z=norminv(1-alpha/2);
 
CI=zeros(1,3);
 
p=k/n;
 
CI(2)=p;
 
halfCI=z*sqrt(p*(1-p)/n);
 
CI(1)=p-halfCI;
 
CI(3)=p+halfCI;
 

Example 5.3.2 Median test 
% LMEx050302_4th 
% LMEx050302_4th 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition 
% Case Study 5.3.2 p.370-371 
% Confidence limits for binomial proportion, k/n 
% input alpha, e.g., alpha=0.05 for 95% CI's 
% output CI    [Lower CI p Upper CI] 
% Median test for an exponential pdf 
% Other m.files using the exponential distribution 
% LMcs030401_4th 
% Requires the statistics and symbolic math toolboxes 
% The exponential parameter, not provided, is 1.0, based on the equation 
% Written October 2010, revised 3/5/11 
syms y m; 
fprintf('s is the integral of the exponential function') 
s=int(exp(-y),y, 0, m) % integral of exponential pdf 
fprintf(...

 'Solve for the value of m such that the integral is 0.5, the median\n') 
solve(s-0.5,m) 
median=eval(solve(s-0.5,m)); 
fprintf(... 
'The median of the exponential distribution with mean 1 is %7.5f\n',median) 
% Generate 60 random numbers from the exponential distribution 
% Larsen & Marx did 1 trial of size 60; this will do 100,000 trials 
trials=1e5; % 1e6 trials produced an out of memory error 
n=60; 
Y=exprnd(1,n,trials); 
Y=Y<median; 
z=norminv(0.975); 
p=sum(Y)./n; % p is a vector of length trials 
CI=[sum(Y)./n-z*sqrt(p.*(1-p)./n);sum(Y)./n+z.*sqrt(p.*(1-p)./n)]; 
Results=~[CI(1,:)<0.5 & CI(2,:)>0.5]; % a 1 only if CI doesn't include 0.5 

http:alpha=0.05
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fprintf('Median Test: In %5.0f trials, %3.1f%% outside 95%% CI.\n',...
    trials,sum(Results)/trials*100); 

5.3.2 Margin of Error 
The margin of error is half the maximum width of a 95% confidence interval. 

Definition 5.3.1 The margin of error associated with an estimate , where k is the number of 

successes in n independent trials, is 100d%, where 

Example 5.3.3 
% LMex050303_4th 
% Written by Eugene.Gallagher@umb.edu 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th ed. 
% page 372 
% Written 3/4/11 
n=1002;ME=norminv(0.975)/(2*sqrt(n))*100; 
fprintf('The margin of error is %3.1f%%\n',ME) 

5.3.3 Choosing sample sizes 

Theorem 5.3.2 
function n= LMtheorem050302_4th(alpha,d,p) 
% format n=LMtheorem050302_4th(alpha,d,p) 
% How many samples required to achieve a 
% margin of error, d, for a binomial parameter, p 
% p from the binomial distribution 
% input alpha, e.g., alpha=0.05 for confidence limits 
% d Margin of error=1/2 95%CI 
% p optional, binomial proportion 
% if not provided, p=0.5 used 
% so that d is the maximum. 
% output n number of samples required 
% Based on Larsen & Marx Theorem 5.3.2 
% Reference Larsen & Marx Introduction to Mathematical Statistics, 3rd ed 
% Same Theorem 5.3.2 in Larsen & Marx (2006) 4th edition, p. 373 
% Written by E Gallagher, 2003, Eugene.Gallagher@umb.edu 
% http://www.es.umb.edu/edgwebp.htm 
% revised 10/17/2010, 10/29/10 
% 
% Find the p value for the cumulative standard normal distribution 
Psn=(1-alpha/2); 
% For alpha=0.05, find the z value at the 0.975 percentile of the 
% cumulative standard normal distribution, or 1.96 
if nargin<3

 p=0.5; 

http:alpha=0.05
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    n=norminv(Psn)^2./(4*d.^2); 
else
    n=norminv(Psn)^2.*p.*(1-p)./d.^2;  % see Equation 5.3.4., p 373, 4th ed 
end 

% nformctrials.m 
% How many Monte Carlo samples required to achieve a 95% confidence interval 
% equal to alpha?  For example, how many Monte Carlo simulations would be 
% required to distinguish a p value of 0.001 from 0.002. An application of 
% Theorem 5.3.2 on page 331 of 
% Larsen & Marx (2001). The application of the decision rule in a Monte Carlo 
% trial can be viewed as the outcome of a Bernoulli trial. For most applications 
% of the Monte Carlo method, there is an observed pattern. Each Monte Carlo 
% simulation is evaluated to determine whether it produces a pattern equal 
% to or more extreme than the observed pattern. That probability, which is 
% a Bernoulli trial is a binomial process. Theorem 5.3.2 calculates the n 
% required to have at least a 100(1-alpha) probability of obtaining an 
% observed p value within a distance of d of p. 
% Last revised 3/4/11 

d=logspace(-6,-1)';% Create 50 logarithmically spaced elements from 10^-6 to 10^-1 

% Power=95%, i.e., 95% chance of distinguishing a difference of size d. 
alpha=0.05; 
n=LMtheorem050302_4th(alpha,d);  % Theorem 5.3.2 from Larsen & Marx, p. 331 in 3rd 
edition and 373 in 4th 
% % A result in a Monte Carlo
                               % trial can be regarded as an outcome of a Bernoulli trial 
X=[ones(size(d)) log(d)];  % set up the explanatory variable ln(d) for a log-log regression;
                                % A column of all 1's first to fit the Y intercept 
Y=log(n);  % ln(number of trials) from Theorem 5.3.2 
B=X\Y  % Matlab least squares regression 

loglog(d,n);xlabel('d in Theorem 5.3.2','FontSize',20);
 
ylabel('Number of Monte Carlo simulations required','FontSize',20);
 
title(sprintf('N = %4.2f*{alpha}^{%4.2f} 

Power=%4.1f%%',exp(B(1)),B(2),100*(1-alpha)),'FontSize',22);
 
figure(gcf)
 
pause
 

% The previous analysis was for a worst-case scenario, where the p values was 0.5. It would be
 
the
 
% appropriate equation if you wanted to distinguish a p value of 0.500 from 0.501. But, in
 
testing
 
% the null hypothesis that 0.005 is different from 0.006, the above
 
% approach is too conservative
 

http:4.2f*{alpha}^{%4.2f
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alph=[0.05 0.01 0.001]; 
for i=1:length(alph)
    alpha=alph(i);
    n=LMtheorem050302_4th(alpha,d,d);  % Theorem 5.3.2 from Larsen & Marx, p. 331. A 
result in a Monte Carlo
                                   % trial can be regarded as an outcome of a Bernoulli trial
    X=[ones(size(d)) log(d)];  % set up the explanatory variable ln(d) for a log-log regression;
                                    % A column of all 1's first to fit the Y intercept

    Y=log(n);  % ln(number of trials) from Theorem 5.3.2

    B=X\Y;  % Matlab least squares regression


    loglog(d,n);xlabel('d in Theorem 5.3.2','FontSize',20);

    ylabel('Number of Monte Carlo simulations required','FontSize',20);

    title(sprintf('N = %4.2f*{alpha}^{%4.2f} 

Power=%4.1f%%',exp(B(1)),B(2),100*(1-alpha)),'FontSize',22);
    figure(gcf)

 pause 
end 

Example 5.3.4 
% LMex050304_4th 
% Written by Eugene.Gallagher@umb.edu 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th ed. 
% page 374 
% Written 10/29/10 
n=LMtheorem050302_4th(0.02,.05) 
fprintf('The smallest acceptable sample size is %3.0f.\n',ceil(n)) 
% If p is 0.2 
p=.2;n=LMtheorem050302_4th(0.02,.05,0.2) 
fprintf('If p=%3.1f, the smallest acceptable sample size is %3.0f.\n',...
    p,ceil(n)); 

finite correction factor (p. 375) If samples are drawn without replacement and that proportion is 
relatively large, the variance of the proportion sampled should be reduced by the finite 

correction factor 

Questions p 375-379 

5.4 PROPERTIES OF ESTIMATORS 

Example 5.4.1 coin tossing, used as an example of precision of estimator 
% LMex050401_4th.m 
% Larsen & Marx Example 5.4.1 
% Analysis of precision 
% Eugene.Gallagher@umb.edu, written 10/2010, revised 3/5/11. 
clear all 

mailto:Eugene.Gallagher@umb.edu
http:n=LMtheorem050302_4th(0.02,.05
mailto:Eugene.Gallagher@umb.edu
http:4.2f*{alpha}^{%4.2f
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hold off; clf
 
p=0.6;n=10
 
P1=sum(binopdf(5:7,n,p));
 
n=100;
 
z1=(0.5-0.6)/sqrt(p*(1-p)/n);
 
z2=(0.7-0.6)/sqrt(p*(1-p)/n);
 
P2=normcdf(z2)-normcdf(z1);
 
fprintf('P, based on large-sample normal approximation=%5.3f.\n',P2)
 
disp('Exact P:')
 
P3=sum(binopdf(50:70,n,p));
 
fprintf('Exact P, based on binomial distribution=%5.3f.\n',P3)
 
n=10;
 
x=0:10;
 
Y=binopdf(0:10,10,p);
 
bar(x/10,Y,1);
 
axis([-.05 1.05 0 .85]);
 
set(get(gca,'Children'),'FaceColor',[1 1 1])
 
hold on
 
bar([.5 .6 .7],binopdf(5:7,10,p),1,'FaceColor',[0.8 1 0.8]);
 
figure(gcf); pause;
 
title('Figure 5.4.1','FontSize',22)
 
xlabel('Value of X/n','FontSize',20)
 
x=-0.05:0.01:1.05;
 
%y2=normpdf(x,0.6,sqrt(p*(1-p)/n));
 
% plot(x,y2/10,'--r','LineWidth',2)
 
n=100;
 
y3=normpdf(x,0.6,sqrt(p*(1-p)/n));
 
plot(x,y3/10,'--r','LineWidth',3)
 
xf=0.5:.001:0.7;yf=normpdf(xf,0.6,sqrt(p*(1-p)/n));
 
fill([0.5 xf 0.7]',[0 yf/10 0]',[0.8 0.8 1])
 
alpha(.5); % sets the transparency to see through.
 
%set(get(gca,'Children'),alpha,0.5)
 
figure(gcf);pause
 
hold off
 

5.4.1 Unbiasedness 
Definition 5.4.1 Suppose that Y , Y , ..., Y  is a random sample from the continuous pdf f (y;θ),1 2 n Y 

where θ is an unknown parameter. An estimator (=h(Y , Y , ..., Y )) is said to be 1 2 n 

unbiased (for θ) if E( ) = θ for all θ. (The same concept and terminology apply if the 
data consist of a random sample X , X , ..., X  drawn from a discrete pdf p (k; θ).1 2 n X

Example 5.4.2 Not programmed 
Example 5.4.3 Not programmed 
Example 5.4.4 Geometric mean 
By definition, the geometric mean of a set of n numbers is the nth root of their product. P. 385 
Note that operationally, the geometric mean is the back-transformed arithmetic mean of log 
transformed random variables. 

http:x=-0.05:0.01:1.05
http:axis([-.05
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Example 5.4.5 
Questions p 387-388 

5.4.2 Efficiency 
Definition 5.4.2. Let 1 and 2  be two unbiased estimators for a parameter θ. If
 

Var(
 1) < Var( 2) we say that 1  is more efficient than 2. Aslo the relative efficiency 
of 1  with respect to 2  is Var( 2)/Var( 1). 

Example 5.4.6 
Example 5.4.7 

Case Study 5.4.1 German tanks 

5.5	 MINIMUM VARIANCE ESTIMATORS: THE CRAMÉR-RAO LOWER 
BOUND [Summer 2011, you can skip this section] 

Theorem 5.5.1 
Example 5.5.1 
Definition 5.5.1 minimum-variance estimator 
Definition 5.5.2 
Example 5.5.2 
Questions 397-398 

5.6 SUFFICIENT ESTIMATORS [Summer 2011, you can skip this section] 
5.6.1	 An estimator that is sufficient 
5.6.2	 An estimator that is not sufficient 
5.6.3 A formal definition 

Definition 5.6.1 
Example 5.6.1 
Example 5.6.2 

5.6.4	 A second factorization criterion 
5.6.5	 Sufficiency as it relates to other properties of estimators 

Questions p 405 
5.7 CONSISTENCY [Summer 2011, you can skip this section] 

Definition 5.7.1 
Theorem 5.7.1 Chebyshev’s inequality. 
Example 5.7.2 
Questons p. 409 

5.8 BAYESIAN ESTIMATION (p. 410-422) 
Search for the U. S. Scorpion, an example of the use of Bayes’ theorem 

5.8.1 Prior Distributions and Posterior Distributions 
“In a non-Bayesian analysis (which would include all the statistical methodology in this book 
except the present section), unknown parameters are viewed as constants; in a Bayesian analysis, 
parameters are treated as random variables, meaning they have a pdf.” p. 411 
Example 5.8.1 Phone calls in a phone bank 
Definition 5.8.1 
Noninformative prior, no prior information, all values of θ equally probable 

Example 5.8.2 
An application of the beta distribution to generate a posterior distribution 
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%LMex050802_4th.m
 
hold off; cla;clf
 
theta=0:0.001:1;
 
Density=betapdf(theta,2,4)
 
plot(theta,Density,'r','Linewidth',3);
 
ylabel('Density','FontSize',20)
 
title('Figure 5.8.1a','FontSize',22)
 
xlabel('theta','FontSize',20)
 
figure(gcf);pause
 
Prior=betapdf(theta,4,102)
 
plot(theta,Prior,'r','Linewidth',3);
 
ylabel('Density','FontSize',20)
 
title('Figure 5.8.1b','FontSize',22)
 
xlabel('theta','FontSize',20)
 
axis([0 0.1 0 35])
 
figure(gcf)
 
hold on;
 
% A work in progress to plot the posterior pdf as a function of k
 
% Let's assume k=4 and n=100, what is the posterior.
 
k=4;n=100;
 
%
 
Posterior=factorial(n+105)./(factorial(k+3).*factorial(n-k+101)).*theta.^(k+3).*(1-theta).^(n-k+
 
101);
 
Posterior=exp(gammaln(n+106)-gammaln(k+4)-gammaln(n-k+102))*theta.^(k+3).*(1-theta).^(n
 
-k+101); % The factorials blow up Matlab; must solve with ln(gamma)
 
plot(theta,Posterior,'m','Linewidth',3);figure(gcf)
 
legend('Prior','Posterior')
 
hold off
 

Example 5.8.3 
If a beta posterior is used for a binomial pdf, it can be updated readily with new binomial 
information to produce another beta distribution. Similarly, the gamma distribution provides a 
suitable prior for Poisson data. 

Case Study 5.8.1 Modeling Hurricanes
 
% LMcs050801_4th.m
 
% Bayesian analysis of the expected number of hurricanes:
 
% Written by Eugene.Gallagher@umb.edu, 3/5/11
 
% for EEOS601, UMASS/Boston
 
theta=1:0.001:2.6;
 
% Use the gamma distribution to model the prior;
 
% Note that Matlab's b is 1 / {L & M's mu}
 
mu=50;s=88;
 
Prior=gampdf(theta,s,1/mu);
 
plot(theta,Prior,'--','LineWidth',3)
 
xlabel('theta, Number of Hurricanes per Year','FontSize',20)
 
ylabel('Density','FontSize',20);
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title('Case Study 5.8.1','FontSize',22)
 
hold on
 
postmu=50+100;posts=88+164;
 
Posterior=gampdf(theta,posts,1/postmu);
 
plot(theta,Posterior,'m','LineWidth',3)
 
legend('Prior','Posterior')
 
figure(gcf);pause
 
hold off
 

Example 5.8.4. The marginal pdf reduces to a negative binomial distribution 

Case Study 5.8.2; An example of fitting the negative binomial to data. 
% LMcs050802_4th.m 
DATA=[repmat(0,82,1);repmat(1,57,1);repmat(2,46,1)
      repmat(3,39,1);repmat(4,33,1);repmat(5,28,1)
      repmat(6,25,1);repmat(7,22,1);repmat(8,19,1)
      repmat(9,17,1);repmat(10,15,1);repmat(11,13,1)
      repmat(12,12,1);repmat(13,10,1);repmat(14,9,1)
      repmat(15,8,1);repmat(16,7,1);repmat(17,6,1)
      repmat(18,6,1);repmat(19,5,1);repmat(20,5,1)
      repmat(21,4,1);repmat(22,4,1);repmat(23,3,1)
      repmat(24,3,1);repmat(25,3,1);repmat(26,2,1)
      repmat(27,2,1);repmat(28,2,1);repmat(29,2,1)
      repmat(30,2,1);repmat(31,13,1)];
  [parmhat,parmci] = nbinfit(DATA,0.05)
  X=0:50;
  Total=504
  Errors = Total*[nbinpdf(X,parmhat(1),parmhat(2))]' 

5.8.2 Bayesian estimation 
How do you find  from the posterior distribution. Differentiate and find the mode? No. 

Definition 5.8.2 Let  be an estimator for θ based on a statistic W. The loss function associated 

with  is denoted L( , θ), where L( , θ) � 0 and L(θ, θ) = 0. 

Example 5.8.5 
Definition 5.8.3 

5.8.3 Using the risk function to find 
Theorem 5.8.1 
Example 5.8.6 

5.9	 TAKING A SECOND LOOK AT STATISTICS (REVISITING THE 
MARGIN OF ERROR) 

Imagine that there is a poll with a 5% margin of error. How many individuals would have had to
 
have been polled?
 
n=LMtheorem050302_4th(.05,.05)
 
384.1459
 
Imagine that the 52% support candidate A and 48% support candidate B. Is the race a statistical
 
tie? Use pollsig.m to check.
 
[ME,D,Dprob,halfCI]=pollsig(N,V,Trials,details);
 

http:n=LMtheorem050302_4th(.05,.05
http:nbinfit(DATA,0.05
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The margin of error for a poll of size 384 is 5.0%.  Monte Carlo simulation based on 100000 
trials: Under the null hypothesis of equal proportions, and 100000 trials, the 2-sided P of 
observing a 4.00% difference by chance = 0.445. The lower 95% confidence limit, median, and 
upper 95% confidence limit based on 100000 trials: Lower 95% CI Median Upper 95% CI is 
[-5.73% 4.17% 14.06%. The difference is 4% ± 9.9%. 

APPENDIX 5.A.1 MINITAB APPLICATIONS 
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